Reduction of Total and Viable Air Particles in the OR Setting by using Ultraviolet In-room Air Disinfection and Recirculation Units

Gannon L. Curtis, MD
Mhamad Faour, MD
Michael Jawad, BS
Alison K. Klika, MS
Wael K. Barsoum, MD
Carlos A. Higuera, MD

November 4th, 2017
Disclosures

• This study was funded by Aerobiotix (Miamisburg, OH)

• Author disclosures can be found on the AAOS Website, aaos.com/disclosures
Airborne bacteria are a major cause of surgical site contamination [1,2].

Sources:
- OR staff
 - Shed 10,000 viable organisms/min [3]
- Door Openings
 - Primary TJA average 60 door openings [4]
 - Defeats positive-pressure 40% of the time [5]

Reducing airborne bioburden is critical for infection prevention.
T1 Crystalline Ultraviolet C (C-UVC) disinfection-recirculation unit

- Aerobiotix, Miamisburg, OH
 - 450 ft3 of air/minute
 - HEPA filter
 - C-UVC radiation

Questions

1. Can the C-UVC unit reduce air particulate caused by OR traffic?

2. Does placement of the C-UVC unit within the OR affect its efficacy?
Methods

• **BioTrak Real-Time Viable Particle Counter** (TSI, Shoreview, MN)
 - Laser-Induced Fluorescence
 - Developed for biological warfare
 - Used in pharmaceutical ultraclean rooms
Methods

- **30 experiments**
 - Empty, + Pressure OR
 - Control vs. 4 m
 - 4 m vs. 8 m
- **23 minutes**
 - 16 air samples at 90 second intervals
 - 4 walkthroughs at pre-set times (3, 7.5, 15, 19.5 minutes)
Methods

- **Total Particle Counts (TPC)**
 - Nonviable particles (e.g. dust)
 - Viable particles
- **Viable Particle Counts (VPC)**
 - Bacteria
 - Squamous cells (e.g. skin)
Results

Total Particle Count (TPC)
Results

Total Particle Count (TPC)
Results

Viable Particle Count (VPC)
Results

Viable Particle Count (VPC)
Outcome Measurements

1. Overall Particle Counts
 - Mean sum of all particles counted during each experiment

2. Change (Δ) in Particle Counts
 - Mean difference in particle count following each door opening and walkthrough

3. Maximum Particle Count
 - Mean single highest recorded particle count per experiment
Outcome Measurements

1. **Overall Particle Counts**
 - Mean sum of all particles counted during each experiment

2. **Change (Δ) in Particle Counts**
 - Mean difference in particle count following each door opening and walkthrough

3. **Maximum Particle Count**
 - Mean single highest recorded particle count per experiment
Results

Overall TPC

Overall VPC
Results

Overall TPC

Particles/m³

- Control
- C-UVC (4m)
- C-UVC (8m)

71% decrease, P = 0.003

Overall VPC

- Control
- C-UVC (4m)
- C-UVC (8m)

58% decrease, P = 0.007
Results

Overall TPC

- Control
- C-UVC (4m)
- C-UVC (8m)

P > 0.999

Overall VPC

- Control
- C-UVC (4m)
- C-UVC (8m)

P = 0.796
Outcome Measurements

1. Overall Particle Counts
 - Mean sum of all particles counted during each experiment

2. Change (Δ) in Particle Counts
 - Mean difference in particle count following each door opening and walkthrough

3. Maximum Particle Count
 - Mean single highest recorded particle count per experiment
Results

Change (Δ) TPC

Change (Δ) VPC

Particles/m3
Results

Change (Δ) TPC

<table>
<thead>
<tr>
<th></th>
<th>Particles/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>13000</td>
</tr>
<tr>
<td>C-UVC (4m)</td>
<td>11000</td>
</tr>
<tr>
<td>C-UVC (8m)</td>
<td>10000</td>
</tr>
</tbody>
</table>

81% decrease, P < 0.001

Change (Δ) VPC

<table>
<thead>
<tr>
<th></th>
<th>Particles/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>700</td>
</tr>
<tr>
<td>C-UVC (4m)</td>
<td>500</td>
</tr>
<tr>
<td>C-UVC (8m)</td>
<td>300</td>
</tr>
</tbody>
</table>

79% decrease, P = 0.028
Results

Change (Δ) TPC

- Control
- C-UVC (4m)
- C-UVC (8m)

Change (Δ) VPC

- Control
- C-UVC (4m)
- C-UVC (8m)

P = 0.814

P = 0.395
Outcome Measurements

1. Overall Particle Counts
 - Mean sum of all particles counted during each experiment

2. Change (Δ) in Particle Counts
 - Mean difference in particle count following each door opening and walkthrough

3. Maximum Particle Count
 - Mean single highest recorded particle count per experiment
Results

Maximum TPC

- Control
- C-UVC (4m)
- C-UVC (8m)

Maximum VPC

- Control
- C-UVC (4m)
- C-UVC (8m)
Results

Maximum TPC
- Control
- C-UVC (4m)
- C-UVC (8m)

72% decrease, P = 0.005

Maximum VPC
- Control
- C-UVC (4m)
- C-UVC (8m)

63% decrease, P = 0.019
Results

Maximum TPC
- Control: 30,000 particles/m³
- C-UVC (4m): 15,000 particles/m³ (6% decrease, P = 0.739)
- C-UVC (8m)

Maximum VPC
- Control: 800 particles/m³
- C-UVC (4m): 640 particles/m³ (18% decrease, P = 0.579)
- C-UVC (8m)
Limitations

- Controlled environment
 - Active OR’s may affect efficacy of C-UVC to reduce particles
- Horizontal laminar flow rooms were not studied
- Particle counters are an emerging tool for microbial surveillance
 - Studies [5,6] have reported their reliability in this setting
Conclusion

- C-UVC units can reduce airborne bioburden in a controlled OR setting
 - Potential to reduce surgical site contamination
- Placement did not affect the units ability to reduce air particles
- Future studies need to be conducted in live arthroplasty cases
Cleveland Clinic

Every life deserves world class care.